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1.0  Job Manager and Remote Execution 

1.1.  Summary 
 

The Job Manager is a CyPhy Test Bench execution utility used by the OpenMETA 

system to isolate the process of composing an analysis job from executing that job on 

computer hardware. The Job Manager can perform execution jobs locally on user’s 

machine as well as on remote servers. It provides a user interface to manage the Job 

Manager’s configuration (i.e., select local or remote execution), monitor the status of 

jobs, and get information about the available remote resources. All jobs are parallelized 

according to the available resources (local or remote).  

 

The Job Manager runs as a separate standalone process so the GME application thread is 

not blocked by the Job Manager, and model editing can continue in GME. The execution 

jobs can be posted to the Job Manager using the Job Manager Library and API.  

Currently, GME is the only system that uses these API’s and library. The Job Manager is 

an executable GUI application implemented in .NET (C#).  

 

1.2.  Objective 
 

The META design flow approach has reduced the design time, one effect of which is the 

increased the number of simulations per time period. Using traditional design approaches, 

designing a single configuration yields a few simulations. Users traditionally manually 

prepare, configure, execute, and analyze these simulations for single design points. Since 

the OpenMETA design flow considers entire design spaces, including multiple 

architecture choices, the collective analysis and simulation of all design points has 

become a computationally intensive process. In fact, it became infeasible for an 

OpenMETA user working on a single workstation with a typical design space to execute 

all required analyses linearly (i.e., one simulation after another). The first reason being 

that some execution tools used in the FANG competition are incompatible with 

Windows; second, in some typical design scenarios there were hundreds or thousands of 

analyses to perform, and some individual analyses took several hours to execute. Parallel 

execution of analyses can significantly decrease the net execution time and get analysis 

data back to the user in a timely manner. 

 

Modern computers have processors with more than one core available for utilization by 

our application. The Job Manager supports parallelizing the executions of independent 

analyses both on the user’s machine and on remote server cloud nodes depending on the 

user’s configuration. The remote execution framework introduced flexibility to use tools 

which target different platforms and operating systems. Thus, if the user’s machine does 

not have a particular analysis tool (e.g., the tool is not compatible with their platform) 
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then they can use the remote execution service to perform the analysis on a remote 

machine, which has all the required tools. Since FANG-1 competitors and beta/gamma 

testers used the VehicleFORGE platform for collaboration, our solution was implemented 

to support the VehicleFORGE authentication, job posting, deleting, monitoring, artifact 

uploading, and artifact downloading APIs. 

1.3.  Architecture/Data flow 
 

 
 

Figure 1: Job Manager - architecture 

 

Users invoke the Master Interpreter on an AVM Test Bench model, an AVM Suite of 

Test Benches model, or an AVM Parametric Exploration model. The Master Interpreter 

prepares the temporary results directories on the local file system, opens the Job Manager 

(if it is not already running), and then posts the analysis jobs by using the Job Manager 

API. When the Job Manager opens, the user is prompted to choose either a local 

execution pool or a remote cloud-based execution pool running on VehicleFORGE. If the 

local pool is chosen then the Job Manager executes all jobs locally and writes the results 

directly back to the local file system. If the Job Manager is configured for remote 

execution, after successful authentication, the temporary result directories are uploaded to 

VehicleFORGE and the statuses of the jobs are updated through the VehicleFORGE API. 

When the remote jobs are completed the results are downloaded to the local file system 

by the Job Manager (see Figure 1). 

 

1.4.  Detailed Description 
 

The Job Manager is a Windows-based application implemented to facilitate the 

allocation, execution, and monitoring of jobs such as CyPhy Test Benches, Parametric 

Exploration models, and Suite of Test Benches (see Figure 2). Each job is an execution 

job and has a set of properties, listed below: 

- Id: Unique identifier of the job 

- Title: Description of the analysis 
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- TestBenchName: Name of the Test Bench that spawned the job 

- WorkingDirectory: Directory for generated files 

- RunCommand: Command the Job Manager will run 

- Status: indicates the current status of the job. Possible values are as follows: 

WaitingForStart, Ready, QueuedLocal, RunningLocal, UploadPackage, 

ZippingPackage, PostedToServer, StartedOnServer, QueuedOnServer, 

RunningOnServer, DownloadResults, RedownloadQueued, 

AbortOnServerRequested, Succeeded, FailedToUploadServer, 

FailedToDownload, FailedAbortOnServer, FailedExecution, Failed. 

- Labels: Description of the combination of software require to run the job 

- ResultsZip: the name of the Python script used to clean up the execution 

workspace after the job is completed on the remote slave machine. 

 

 
Figure 2: Screenshot of the Job Manager - shows jobs failed, succeeded etc. 

 

The Job Manager supports two modes of operation: (a) local execution of jobs on the 

user’s machine and (b) remote execution on the cloud (see Figure 3). The execution mode 

is of no consequence to the user; the structure and content of the results package is 

presented in a consistent manner for both local and remote execution. 
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Figure 3: Screenshot of the Configuration - show remote setup with username and pass 

 

In local execution mode the Job Manager employs the user’s machine and its resources, 

including memory and CPU. The Job Manager queries the number of available CPU 

cores and runs execution jobs in parallel on as many CPU cores are available. This 

approach increases the throughput of Test Bench and Parametric Exploration model 

executions. 

 

To enable the remote execution of jobs on servers, the Jenkins continuous integration 

system was chosen. Jenkins is an extensible open-source continuous integration server 

implemented in Java that supports scheduling, distribution of jobs, and the management 

of various slave workers, each of which may use different platforms (we have utilized 

Windows and Ubuntu workers for AVM). Jenkins provides a REST API for many job 

management tasks, including the ability to create, delete, and monitor jobs.  

 

Jenkins has various native authentication methods, but these methods would have 

required all OpenMETA users to manually register on the Jenkins server. Instead we 

chose to use the VehicleFORGE collaboration platform to provide the authentication 

layer for all registered users on a specific deployment: beta, gamma, or FANG. Jenkins 

was configured to isolate different user’s jobs and to provide access control to individual 

jobs. 

 

Jenkins works based on a one-master-node-and-multiple-slave-nodes model, which by 

default results in the ‘archived’ job artifacts being transferred to the master machine (i.e. 

the user’s machine) on job completion. Since we are running thousands of jobs with 

sometimes large execution artifacts, this default behavior does not scale in terms of hard 

drive usage. Thus, to support large archived artifacts, the Job Manager uploads the job 

execution source package to temporary cloud storage (i.e., Simple Storage Service [S3] 

bucket), uses the Jenkins REST API to create a job, and passes the cloud storage URL as 

a job parameter. The Jenkins master node accepts the job description and schedules the 

execution job on a slave. Each slave is configured to run a specific number of jobs 

concurrently. If the number of jobs exceeds the available slave capacity, the jobs will be 
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queued. Queued items are dequeued in a first-come first-served order, except if the user 

marks a job as “high priority.” Users can mark only a certain number of jobs as “high 

priority” per day. As part of the job distribution algorithm, the master node only 

considers slaves which have all of a job’s labels. The job labels specify the required tools, 

version, or operating system that the slave node must have in order to execute the job. 

Once the job description is sent to a slave, the slave downloads the source package from 

the cloud storage (S3 bucket) and performs the analysis. After an execution attempt, 

regardless of failure or success, the generated artifacts are packaged and stored in another 

temporary S3 bucket. If the ResultsZip attribute is specified for any job submitted to the 

Job Manager, then the ResultsZip Python script is used to perform the packaging/clean-

up of the artifacts. This feature is critical when dealing with large redundant artifacts 

(e.g., CAD components from a CAD Assembly job), as it eliminates unnecessary network 

and storage overhead. The Job Manager is continuously monitoring all posted jobs to the 

remote Jenkins master node. If a job status has changed from “in progress” to “failed” or 

“succeeded,” the Job Manager downloads all archived artifacts, including the standard 

output log file (i.e., console log) to the client’s machine (i.e. the user’s machine).  See 

Figure 4 for an example Jenkins monitoring dashboard. 

 

 
Figure 4: Showing jobs from multiple users 

 

The Job Manager has network communication over HTTP and TCP/IP. Sometimes these 

connections are unreliable, and for jobs with extremely long execution times (e.g., several 

hours up to a few days) it is impossible to expect the user to keep the Job Manager 

application open and running. Therefore, the Job Manager was extended with various 

capabilities to handle network disconnectivity and recover any pending remote jobs on 

startup. For certain job types the generated artifact sizes were large, and in some cases a 

“redownload” capability was required if the user lost the network connection during 

download. 
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1.5.  Future Enhancements 
 

The current version of the Job Manager supports the VehicleFORGE API for 

authentication and remote job management. This API can be extended with other 

authentication services or with other cloud based job scheduling services. Thus, the jobs 

can be executed on public (e.g., Amazon) or private (e.g., OpenStack) clouds. It is 

extremely important to consider that all submitted data and results can have different 

restrictions on availability. Therefore, the connection between the cloud services and the 

Job Manager must be secure. 

 

1.6.  AVM Involvement 
 

VehicleFORGE provided the collaboration platform for many alpha testers, in addition to 

all beta- and gamma-testers and FANG-1 participants. The Job Manager was used to 

perform design analysis in the cloud. In certain cases the end users did not have direct 

access to the analysis tools, since they were only deployed on the remote machines. 

Moreover, users mentioned above already had credentials for specific VehicleFORGE 

deployments, which made it easy to authenticate users that can have access to execution 

resources (e.g., CPU, memory, storage). Since all remote execution jobs went through 

VehicleFORGE, it was easy to monitor and adjust resources based on the users’ needs. 

 

In the gamma testing period, 2640 Test Benches were executed through the remote 

execution service (on the VehicleFORGE cloud). These Test Bench jobs used twenty-two 

different types of analysis tools, utilizing both Windows and Linux platforms. 

 

1.7.  Conclusions 
 

The Job Manager application provides the flexibility to execute analyses (e.g., run 

simulations) locally or remotely. Users are able to use their multiple (CPU) core 

machines to effectively run analyses in parallel over an entire design space. If the size of 

the design space or the number of Test Benches grows beyond a single machine’s 

computational power or the analysis/simulation takes hours (or even days), the remote 

executors can be used to distribute the work in the cloud. This approach significantly 

increased the execution and simulation working capacity and reduced the time required to 

get analysis results. 

2.0  Project Analyzer/Dashboard 

2.1  Summary 
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The OpenMETA toolchain allows creation of large design spaces along with any number 

of Test Bench models to evaluate design points against specific requirements. The 

Project Analyzer, or Dashboard, provides a concise user interface to easily understand 

and interpret all Test Bench results across user-selected point designs from the design 

space with respect to design requirements. The Project Analyzer is a web-based cross-

platform application implemented in HTML, CSS, and JavaScript. Using various 

widgets, the Project Analyzer collects and visualizes all relevant design level results (e.g., 

metrics) in a web application. 

 

The Project Analyzer was developed primarily by Georgia Tech (Aerospace Design 

Laboratory), with integration and design/debugging assistance from Vanderbilt 

University.  A wide range of visualization techniques were implemented and integrated, 

including Parallel Axis Plots, design ranking, design point clustering, surrogate model 

response surfaces, etc.  Each of these visualization techniques supports color coding of 

designs according to Multi-Attribute Utility Function (MAUF) score, ranking, and 

detection of component limit violations.  

 

2.2  Objective 
 

Complex designs in CyPhy can contain large design spaces, which must be evaluated 

across a large number of requirements and Test Benches. A visualization of the generated 

analysis results (e.g. simulation results) is necessary in order to efficiently compare 

designs to aid in making design choices and tradeoff studies. For this reason, metrics are 

defined on each Test Bench by users, and the metric values are extracted from the raw 

simulation data after every execution and stored in a standardized format. The AVM 

program uses Multi-Attribute Utility Functions to evaluate the “score” of a design point 

based on its calculated metric values. In addition to displaying the actual metric values 

for all the executed simulations in a succinct fashion, it would be useful for the results 

visualization tool to be able to calculate and even display the MAUF score for each 

design. These were the driving factors during the development of the Project Analyzer. 

 

For the visualization of the execution results, it was logical to use a web-based approach
1
. 

A web-based implementation gives the flexibility to use any platform that has a web 

browser, and end users do not need to install any tools or keep them up-to-date. The 

Project Analyzer was implemented to work with or without an internet connection, 

including the following use-cases:  

- on a server as a deployed web application 

- as a visualizer plugin for VehicleFORGE 

- locally from the user’s file system 

 

                                                      
1
 MS Excel was briefly considered, but it is neither open-source nor cross-platform, and was abandoned. 
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The choice of a web-based approach for the implementation of the Project Analyzer came 

with benefits and constraints. To get a responsive, usable web application, it was 

necessary to address all constraints including memory, computational, and scalability. 

Result sets can quickly become large and cumbersome, and it is important to be mindful 

of memory limitations and how the data is loaded, processed, stored, and cleaned up. 

Details are presented in the Project Analyzer report from Georgia Tech ASDL. 

 

2.3  Architecture 
 

 
Figure 5: Project Analyzer architecture diagram 

 

The Project Analyzer package is built up by the MasterInterpreter and Job Manager, and 

contains all the information to visualize and compare a set of results (see Figure 5): 

- index.html - a static file; the main ‘entry-point’ for the web application 

- dashboard directory - contains both static files (including the HTML page 

templates, and CSS files), and the JavaScript libraries required to parse the result 

packages and customize the presentation of the result data; this allows the 

dashboard to be used as a standalone application, without an internet connection 

- manifest.project.json - contains links to all the files describing the results 

package; loaded by the dashboard application as a map to all results data 

- designs directory - contains AVM Design Model (.adm) files describing the 

individual design configurations generated from the design space 

- design-space directory - contains .adm files describing the design space 

- requirements directory - contains the requirements (json) file describing the 

design requirements used for evaluating, scoring, and comparing results 

- results directory - contains the results summary (json) file, listing all the result 

packages generated from the design space; each result package contains 

metric/limit violation plots and the testbench manifest, which summarizes the 

Test Bench execution results  
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- test-benches directory - contains Test Bench description files (Parameters, 

Metrics, etc.) 

 

2.4  Data flow 
 

 
Figure 6: Project Analyzer data flow 

Users generate design points using the OpenMETA tools’ design space exploration 

functionality and execute CyPhy Test Benches to evaluate the system level requirements 

of their point-designs (see Figure 6). Once the Test Bench executions are finished, the 

Project Analyzer can load all generated analysis results and display them for the users in 

an interactive format. Then, users can more easily compare the performance of each 

design and make tradeoff decisions based on the presented analysis results. Based on the 

data analysis, further design constraints can be formulated and added to the original 

CyPhy design space. Through this iterative process the design can rapidly evolve in a 

constructive direction, allowing users to quickly get functional point-designs which 

satisfy all the defined system level requirements. 

 

2.5  Detailed Description 
 

The Test Bench Manifest file, which is the standard result format, allows the Project 

Analyzer to display metric values for multiple designs and Test Benches simultaneously; 

the user can also add a constraint from the visualizer, and immediately see which designs 
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fail to meet that constraint. The Project Analyzer provides a set of widgets to visualize all 

data and results generated by the OpenMETA toolchain. In addition to the visualization 

widgets, users can reorganize and change each page’s layout as well as resize the widgets 

to get all the relevant details in a single page. The design points can be color-coded on 

several widgets based on limit violation, scoring, ranking, meeting the requirements, etc. 

The visualization framework ensures that the color coding is consistent across all 

widgets, which helps the user to understand and interpret the data. In case the Project 

Analyzer is deployed on VehicleFORGE, the scoring and component hyperlink 

functionality is enabled. Users can see the leaderboard, how their design performs 

compared to others, and can easily navigate to any component documentation from the 

widgets that list components.  

 

The Project Analyzer provides one-, two- and three-dimensional visualization techniques 

for different purposes. The one-dimensional techniques are used for the Test Bench 

metric visualization, the physical limit violations on components, and the formal 

verification results with counter examples (if applicable). The two-dimensional 

techniques are the parallel axis plot, the multivariate plot, the prediction profiler, the 

Probabilistic Certificate of Correctness (PCC) distributions, and the design ranking. The 

parallel axis plot shows all the user-selected metrics on individual vertical axis and 

represents each design point as a line, which connects the vertical axis. The multivariate 

plot is a scatter plot, where the x-axis is one metric, the y-axis is another metric, and the 

points represent design points. Users configure which metrics to plot. The prediction 

profiler is available if a surrogate model was generated for a Test Bench. The prediction 

profiler is used to predict the Test Bench metrics (e.g., system performance 

characteristics) based on the input parameters of the Test Bench utilizing the surrogate 

equations. If PCC experiments are performed, the output distributions and sensitivity 

measures are plotted for each Test Bench. The design ranking widget provides 

visualization and configuration for weights to evaluate the Multi-Attribute Utility 

Functions (MAUFs), to compare design points, and to rank all design points according to 

the relative scores. This capability can be used to answer several design problem 

questions:  

- Which design should we use for a set of requirements? 

- Which design is the best for a specific set of weights? 

- Which designs remain on the top of the list even if we change the weights? 

Finally, the three-dimensional visualization technique is used to display response surfaces 

for Test Bench surrogate models. The 3D plots show two input parameters of the Test 

Bench in the xy-axes and one metric on the z-axis (see example in Figure 7). The 

projections of all 3D plots are shown in 2D constraint plots and the Test Bench input 

parameters can be set using sliders to change the constraint plots within the ranges for 

which the surrogate model is valid. 

 



11 

 
Figure 7: Response Surface for Power Take Off Module Temperature w.r.t. Grade and Coefficient of Rolling 

Resistance 

 

The Project Analyzer report, prepared by Georgia Tech, contains in-depth details about 

the application and its widgets, features, accessibility matrix, extensibility, and how other 

applications can be built to leverage this framework. 

 

The Project Analyzer aims to assist with data visualization across multiple and bigger 

data sets, hence it is not designed and has no functionality to visualize detailed simulation 

data (e.g., plots of variables over simulation time). For dynamics simulation result 

visualization a web-based application was developed called SimViz. SimViz is used to 

load dynamics simulation results generated by a Modelica simulation tool (e.g., Dymola, 

OpenModelica). This application allows users to plot a particular simulation variable (vs. 

time) for many design points, which helps comparing both design and architecture 

alternatives at the lowest level. For metrics and limit checks the time series of data are 

automatically saved in the results directory and referenced from the Test Bench manifest 

file. Thus, the Project Analyzer can load these plots; an example of such a plot is shown 

in Figure 8 below. 
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Figure 8: Vehicle speed vs. time 

2.6  Future Enhancements 
 

The Project Analyzer was implemented in a way that it is easy to visualize result data 

from any 3rd-party tool that can produce metric data in accordance with the JSON file 

format (i.e., the Test Bench manifest file). Also, it is possible to implement new 

JavaScript widgets to visualize new types of data. 

 

2.7  AVM Involvement 
The Project Analyzer was used extensively in alpha testing, beta testing, FANG-1 

challenge, and in gamma testing. Each group showed interest in this tool and found it 

essential to speed up the interpretation of the results and the evaluation of the designs, 

and even proved useful for internal development (i.e., functional testing). Many beta and 

gamma testers pointed out features that would improve their current design processes. 

They also gave feedback on possible future enhancements. For instance, the ‘Export as 

CSV’ feature was added after the FANG-1 challenge, allowing users to export any 

tabulated data. All users from the FANG-1 challenge interacted with the Project Analyzer 

since it was deployed on the VehicleFORGE platform. 
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2.8  Conclusions 
 

The Project Analyzer is one of the key components of the OpenMETA toolchain. It 

provides a rich, web-based, cross-platform, interactive visualization environment for 

designers. It is highly customizable based on the user’s preference, and data can be 

exported to CSV format if more sophisticated analysis is desired. The Project Analyzer 

can read any input data conforming to the defined directory and file structure. In other 

words, if other tools can generate and structure analysis results in the same way as the 

OpenMETA tools, then the Project Analyzer can easily visualize that results data. 

 

3.0  Parametric Tool Exploration 

3.1  Summary 
 

The Parametric Exploration Tool (PET) allows the evaluation of design models and Test 

Benches across a range of parameters to accomplish various types of design space 

exploration tasks. The CyPhy language defines a set of concepts which makes it possible 

for any user to compose a model specifying a design-of-experiment (DOE).  

 

Each PET model consists of a reference to a CyPhy Test Bench and a driver object, 

which defines ranges and/or statistical distributions for the experiment inputs (i.e., Test 

Bench parameters), along with constraints on the experiment outputs (i.e., Test Bench 

metrics). There are three types of PET drivers: (a) Optimizer, (b) Parametric Study 

(Design of Experiment), and (c) Probabilistic Certificate of Correctness (PCC). 

 

The Probabilistic Certificate of Correctness (PCC) is used to determine the robustness of 

a single design point. The design may perform well under specific conditions with certain 

parameters, but we cannot assume those ideal conditions will exist for all time in the 

future use of that design. PCC gives users the ability to vary inputs and parameters 

according to expected statistical distributions, perform multiple simulations on the same 

design, and determine how consistently the outputs behave across those input ranges.  

 

The CyPhyPET tool takes a PET model and translates it into OpenMDAO modules and 

an OpenMDAO assembly, which defines the Parametric Exploration problem. After the 

problem is executed in the OpenMDAO framework, results are stored in a format that the 

Project Analyzer can parse and visualize for the user. The result formats include response 

surfaces, surrogate model equation sets, and distribution functions for input and output 

values of the CyPhy Test Bench. The Parametric Exploration Tool (PET) is part of the 

CyPhy Modeling Language and the model transformation tool (CyPhyPET) is 

implemented as a GME model interpreter in .NET (C#).  
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3.2  Objective 
 

The design space exploration tool (DESERT) provides a very good method for solving 

the discrete design space exploration problem. The design space encodes possible point-

designs using alternative and optional component and subsystem choices, along with 

constraints on those possible combinations. However, in certain phases in the design 

process, this component-wise discrete design comparison is too crude to be useful. In 

such cases, users need to analyze designs across continuous parameter ranges, resulting in 

two common use-cases: (1) they can use PET results to formulate additional constraints 

on the design space, in turn yielding a subset of design points which are more likely to 

fulfill design requirements; (2) they can assess the sensitivity and robustness of the 

finalized design candidates.  

 

3.3  Architecture 
 

 
 

Figure 9: Parametric Exploration Tool – architecture 

 

3.4  Data flow 
 

 
Figure 10: Parametric Exploration Tool - data flow 
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3.5  Detailed Description 
 

To facilitate the definition and execution of Parametric Explorations problems in 

compliance with the project requirement to use an open-source tool, we have chosen the 

Open-source Multidisciplinary Design Analysis and Optimization (OpenMDAO v0.8.1) 

framework (see Figure 9). OpenMDAO is a cross-platform project that is implemented, 

maintained, and supported by NASA. It has a wide range of existing plugins, and boasts 

an active user community. The OpenMDAO framework is implemented in Python and 

utilizes “components,” which are Python-wrapped functions or executables, the logic or 

execution of which is provided by some external tool. Because CyPhy Test Bench models 

are executable versions of the user-defined requirements, it is a reasonable choice to wrap 

them as OpenMDAO components. In this way, the OpenMETA tools’ CyPhyPET 

component provides design-of-experiment capabilities, and its implementation is 

provided in such a way that it is easy to extend it with any new CyPhy Test Bench types, 

as well as any plugins and drivers from the OpenMDAO community (see Figure 10). A 

detailed description of the CyPhyPET model interpreter is presented below. An example 

of a driver extension is the Probabilistic Certificate of Correctness (PCC) robustness 

analysis, which is implemented as an OpenMDAO driver leveraging all OpenMDAO 

features and capabilities, such as parallel execution of experiments. In the scope of this 

project, users ran Parametric Exploration experiments on both Windows and Linux 

(Ubuntu) platforms. 

 

 
Figure 11: A CyPhy PET model with a DOE driver generating a Response Surface Surrogate Model 
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An example of a PET model is shown in Figure 11. This example shows the different 

PET driver types on the left-hand side and some attributes of a Parameter Study driver on 

the right-hand side. The middle window depicts a CyPhy Test Bench, a Parameter Study 

driver, and the experiment set up through the connections between the Test Bench and 

the driver. To implement PET models, the CyPhy Language had to be augmented with 

some new concepts: 

 

- Test Bench Reference object - used to point to an existing Test Bench model 

- PET Driver object 

- Optimizer 

- Optimizer methods 

- CONMIN: CONstrained function MINimization. 

Implements the Method of Feasible Directions to solve the 

NLP problem 

- NEWSUMT: NEWton’s method Sequence of 

Unconstrained Minimizations 

- COBYLA: Constrained Optimization BY Linear 

Approximation of the objective and constraint functions via 

linear interpolation 

- Parameters/Outputs 

- Design Variables are connected to the parameters of the 

referred Test Bench. The ‘range’ attribute defines an 

inclusive real interval that is sampled. 

- Objectives are connected to metrics of the referred Test 

Bench and define which values have to be minimized. 

- Optimizer Constraints are custom mathematical 

expressions (using Python syntax) of Design Variables and 

Objectives. 

- Parameter Study (Design of Experiment) 

- Design of Experiment methods 

- Full Factorial generates a set of design points that fully 

span the range of the parameters at the requested resolution 

- Central Composite 

- Opt Latin Hypercube produces an optimal Latin hypercube 

based on an evolutionary optimization of its Morris-

Mitchell sampling criterion 

- Uniform performs a uniform space-filling Design of 

Experiments 

- Surrogate Model Types 
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- Response Surface: Surrogate Model based on second order 

response surface equations 

- Kriging Surrogate: Surrogate model based on the simple 

Kriging interpolation 

- Logistic Regression: Surrogate Model based on a logistic 

regression model, with regularization to adjust for 

overfitting 

- Neural Network: Feedforward Neural Net surrogate model 

- Parameters/Outputs 

- Design Variables are connected to the parameters of the 

referred Test Bench. The ‘range’ attribute defines an 

inclusive real interval that is sampled. Alternatively, an 

array of values can be specified for each design variable, in 

which case the driver will sweep over the user-defined set 

of discrete input values.  

- Objectives are connected to metrics of the referred Test 

Bench, and define the output values to be stored for each 

Test Bench execution. These metric values, along with the 

design variables, are used for calculating the surrogate 

models. 

- Probabilistic Certificate of Correctness (PCC)
2
 

- Uncertainty Propagation methods 

- Monte Carlo Simulation 

- Taylor Series Approximation 

- Most Probable Point Method 

- Full Factorial Numerical Integration 

- Univariate Dimension Reduction Method 

- Polynomial Chaos Expansion 

- Sensitivity Analysis methods 

- Sobol  

- FAST  

- EFAST  

- Parameters/Outputs: 

- Input distributions types: Beta, Log-Normal, Normal, and 

Uniform 

                                                      
2
 For in-depth implementation details on PCC, please refer to the OSU PCC report. 

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FOpenMDAO-Plugins%2Fneural_net&sa=D&sntz=1&usg=AFQjCNFlEe-Mdv-J_14F7QN9jOVPjF1YTg
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- PCC Output: defines a minimum and maximum value for 

metrics and the target joint PCC value. 

 

The currently supported Test Bench types in a PET model are: 

- Dynamics Test Benches using OpenModelica or Dymola 

- CAD Test Benches using Creo 

- FEA Test Benches using Abaqus 

 

One merit of using OpenMDAO is the improved scaling provided with parallelism, since 

independent OpenMDAO jobs can be executed simultaneously, allowing faster 

turnaround time. In the same way that CyPhy Test Benches are translated into ‘jobs’ for 

execution, Parametric Exploration models are translated into a set of independent 

OpenMDAO execution tasks; this set of OpenMDAO tasks can be scheduled for 

execution by the Job Manager, and allocated to execution resources (both local and 

remote) as they become available. A further benefit is the utilization of surrogate models, 

which are approximations (e.g., polynomial) of the Test Bench models; this often reduces 

computational time compared to the original Test Bench execution, resulting in reduced 

design time. A user-specified surrogate model is automatically generated for Test 

Benches when a DOE is performed. 

 

CyPhyPET is a GME interpreter that translates PET models into a set of OpenMDAO 

components in the form of Python scripts. CyPhyPET implements the 

IMgaComponentEx and ICyPhyInterpreter interfaces and works on a PET model, where 

the referred Test Bench contains a single point-design. Since the ICyPhyInterpreter 

interface is implemented by CyPhyPET, the Master Interpreter can be used to invoke 

CyPhyPET on the PET model template over an entire design space. 

 

In order to wrap the composed CyPhy Test Bench and generate executable PET artifacts, 

CyPhyPET must first invoke a domain-specific model translation interpreter, defined by 

the Test Bench’s workflow object. CyPhyPET evaluates 55 structural model checking 

rules in five contexts, and if the PET model is invalid, it generates error/warning 

messages and hints for the users to fix the errors. CyPhyPET also has to prompt the user 

(once) to get all necessary configurations (e.g., the set of design-points to analyze and the 

domain-specific translator’s configuration). Once the user has entered the required 

configuration and the PET models have been elaborated over the design space, the PET 

model is processed by the CyPhyPET interpreter. The following files are generated in the 

defined temporary results directory: 

- driver_runner.py 

- Entry point and error handling. 

- test_bench.py 

- OpenMDAO component that wraps the Test Bench. 

- modelica/cad/fea_executor.py 
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- Domain specific implementation for running initial Test Bench execution, 

updating parameters and executing the Test Bench.  

- driver.py 

- OpenMDAO Assembly defining the Optimizer, Parameter Study or 

Probabilistic Certificate of Correctness experiment. 

 

Additionally, save_results.py, surrogate_model.py and SurrogateModelValidation.py are 

generated for Parameter Studies. The latter two are generated when a surrogate model is 

defined.  

- surrogate_model.py 

- OpenMDAO Assembly defining the surrogate model (for the Test Bench). 

- SurrogateModelValidation.py 

- Does an evaluation of the generated surrogate model. 

 

After all files are successfully generated, the MasterInterpreter creates a new job entry in 

the Job Manager and requests the execution of each job (one job is generated per point-

design).  The results directory contains analysis artifacts after the automated execution of 

the OpenMDAO experiment. The generated artifacts are as follows: 

- Optimization 

- No artifacts are generated. 

- Parameter Study 

- meta_model_info.p - pickle file (serialized object) containing the 

surrogate model (when such is chosen in the experiment definition). It is 

loaded during the surrogate model evaluation and can be used in further 

experiments. 

- output.csv - list of inputs and outputs for each iteration. 

- model_perf.json - summary of the surrogate model evaluation. 

- Probabilistic Certificate of Correctness 

- parameters.csv - list of inputs and outputs for each iteration. 

 

Since the results are stored in a unified way within the Test Bench Manifest file, the 

Project Analyzer can parse the outputs of the OpenMDAO experiment and can visualize 

all analysis results. Parametric Study results are visualized as 3D surface plots, surrogate 

models, and an interactive prediction profiler. Probabilistic Certificate of Correctness 

results are visualized as distribution functions and heat maps across the design space and 

across all the different Test Benches. See the Project Analyzer section for further 

visualization details. 

 

3.6  Validation 
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The OpenMDAO environment includes several examples, for instance the optimization 

problem of a paraboloid. As we developed the CyPhyPET model transformation tool, we 

used some of their examples, including the optimization problem of a paraboloid, to 

validate our Python source code generator. The execution results of the generated source 

code were continuously compared to the results that the built-in examples provided. This 

validation process ensured that the OpenMDAO components are accurately generated 

from the CyPhy models. 

 

3.7  Future Enhancements 
 

The current version of the OpenMETA toolchain (14.12) uses the 0.8.1 version of 

OpenMDAO. To enable the latest OpenMDAO drivers and features, the OpenMETA 

tools should be updated to use OpenMDAO version 0.10.3.2. Additional drivers and 

plugins can be installed or implemented to provide more flexibility in terms of analysis 

capabilities. Support for unit conversion (between the driver and the Test Bench) and 

non-linear value flow expressions (between parameters) would be a valuable 

improvement. 

3.8  User Guides 
 

The end user documentation is published on VehicleFORGE and comes with the 

OpenMETA toolchain installer. Once the tools are installed the documents are available 

in the Public Documents directory. 

 

3.9  AVM Involvement and Conclusion 
 

The Parametric Exploration Tool was used extensively in the AVM program, both as a 

design tool for FANG users and in the C2M2L curation project as a component model 

verification tool. CyPhyPET supports and was used in both dynamics and 3D geometric 

analyses, including automated parametric analysis of Lumped Parameter Dynamics (i.e., 

Modelica) models and Finite Element Analysis experiments using Creo and Abaqus. In 

the FANG competition and in beta/gamma testing, CyPhyPET provided the users with 

sensitivity analysis, optimization, and design of experiment capabilities, all of which 

contribute to a high level of confidence in the final design selection. It provides the 

ability to compose and compile a single system model, and to rapidly execute many 

simulations under similar conditions with minimal user interaction. Users may select 

from different drivers, and for PCC, they may choose from different analysis methods. In 

the case of PCC, the estimated number of executions (based on the method and number 

of inputs/outputs) will be shown on the GME console, giving users an idea of how much 

time the analysis will take to complete. 
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In the context of the C2M2L component curation process, CyPhyPET was used on unit 

Test Benches for component model verification. Parametric Exploration, PCC in 

particular, provided the ability to quantify the robustness of parametric component 

(Modelica) models from the C2M2L Modelica library, and to verify that the models were 

indeed parametric and were functional across the full parameter ranges specified by the 

model author. A component model is of limited value (and is therefore considered of 

lower quality) if its behavior is fragile in relation to the choice of parameter values. Thus, 

it is important for designers to know the limitations of any component models used in the 

system design, since fragile component models will contribute to fragile system models. 

The parametric exploration and analysis capabilities provided by CyPhyPET are 

invaluable in the design process, and gives users an easy way to configure such 

experiments, leveraging the OpenMDAO framework. 

 

4.0  External Analysis Tool Integration 

 

In the OpenMETA toolchain, all system-level design requirements are captured in Test 

Benches as metrics. Test Benches must be executed to produce the metric values and 

evaluate all requirements. Each Test Bench execution may require different tools to 

perform a specific analysis. The OpenMETA framework provides a flexible approach to 

the integration of third-party analysis tools. 

 

4.1  Objective 
 

The standard OpenMETA tools already provide the means to generate execution artifacts 

for typical cyber-physical systems, including dynamics behavior models and CAD (i.e., 

geometric) system assemblies, but specialty users may need to build upon these 

capabilities to extract metrics for their specific domains. For this reason, we want to 

provide a simple way to mesh new custom analysis tools with OpenMETA. Thus, all 

analysis tools are implemented as self-contained directories and the OpenMETA tools 

provide hooks to inject user-defined scripts (i.e., external analysis tools or modules) into 

the Test Bench execution process. This approach has the several merits, which benefit 

both the robustness/extensibility of the OpenMETA toolchain and any 3rd-party tool 

developer: 

● Extension modules can be deployed to add new analysis capability without 

recompiling the OpenMETA source code 

● No restriction on the programming language for the external analysis tools 

● External analysis tools can leverage any model transformation component 

provided by OpenMETA 
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● Each analysis tool can be executed over an entire design space including different 

architecture alternatives, which yields significant design time reduction compared 

to traditional methods 

● Analysis tools are executed by the Job Manager, which provides a parallel 

execution framework over multiple Test Benches and design points 

● Results (i.e., metrics) of the analysis are presented by the Project Analyzer at no 

extra implementation cost. This helps end users to visualize all results over a 

design space and make decisions based on the design rankings. 

 

4.2  Architecture 
 

New analysis tools can be easily added to the OpenMETA toolchain without the need to 

recompile the OpenMETA source code or build a new OpenMETA installer from scratch. 

Each analysis tool has to be put into a special directory (i.e., 

%METADIR%\analysis_tools\), along with a tool descriptor file 

(analysis_tool.manifest.json) file and all the execution files including the entry point of 

the tool. Figure 12 depicts the logical grouping of this directory structure as well as 

examples for a manifest file and a workflow configuration. After the analysis tool is 

created in the directory, a registration process is executed that registers all analysis tools. 

All AVM/CyPhy Test Bench models include a workflow object that lists all registered 

analysis tools, which are associated with the selected CyPhy interpreter (i.e., model 

transformation tool). This architecture makes the analysis tool integration testing easier, 

since the integration can be done on any machine where the OpenMETA toolchain is 

installed. 

 

 
Figure 12: Analysis tool architecture 



23 

4.3  Data Flow 
 

Each AVM/CyPhy Test Bench model contains a workflow reference that defines a Task. 

The Task in the workflow object specifies a CyPhy Analysis Interpreter, which 

creates/exports some artifacts from the CyPhy model. Users are prompted to select the 

analysis tool from a list; when the Default option is selected the CyPhy Analysis 

Interpreter generates all default execution artifacts and an entry point for the default 

analysis. If the analysis tool is specified, for example AnalysisToolExample, then the 

execution files are copied into a temporary output (i.e., result) directory by the Analysis 

Interpreter. The generated result package is posted to the Job Manager; and the Job 

Manager executes the analysis job and saves the analysis results.  See Figure 13 for an 

depiction of the analysis tool interpretation flow. 

 
Figure 13: Analysis tool data flow 

4.4  Detailed Description 
 

Many analysis tools are integrated with the OpenMETA toolchain as shown in Table 1. 

The analysis tools can be implemented in any programming language as long as they 

have an entry point that can be called from command line (on Windows or Linux). If the 

analyses are executed remotely, then the remote slave computers must have the specific 

analysis tools and all of their dependencies installed separately if they are not part of the 

OpenMETA installer. 

 

If an analysis tool is integrated into the OpenMETA toolchain, then the new tool can 

leverage all OpenMETA capabilities, such as discrete design space exploration and 

parallel execution of the analysis over a design space both locally and remotely (using the 

Job Manager). 

 

Analysis tool name Implemented by Used model Programming 
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transformation 

(Analysis Interpreter) 

language 

CFD Vanderbilt University CyPhy2CAD_CSharp Python 

Closures Ricardo Inc. CyPhyCADAnalysis Python 

Completeness PSU (iFAB) CyPhyCADAnalysis Python 

Conceptual 

manufacturing 

PSU (iFAB) CyPhyCADAnalysis Python 

Corrosion Ricardo Inc. CyPhy2CAD_CSharp Python 

Detailed 

manufacturing 

PSU (iFAB) CyPhyCADAnalysis Python 

Ergonomics Ricardo Inc. CyPhyCADAnalysis Python 

Example Count 

Components 

Vanderbilt University CyPhyDesignExporter Python 

Example Generate 

Bill Of Materials 

Vanderbilt University CyPhyDesignExporter Python 

FAME Critical Fault 

Count 

PARC CyPhy2Modelica_v2 Python/Java 

FAME Fault Count PARC CyPhy2Modelica_v2 Python/Java 

Field of fire Ricardo Inc. CyPhyCADAnalysis Python 

Field of view Ricardo Inc. CyPhyCADAnalysis Python 

Freed Linkage 

Assembler 

Vanderbilt University CyPhy2CAD_CSharp Python/Java 

HybridSal 

(Formal Verification) 

SRI CyPhy2Modelica_v2 Python/SAL 

Ingress and egress Ricardo Inc. CyPhyCADAnalysis Python 

Qualitative Reasoning 

(QR) Module 

(Formal Verification) 

PARC CyPhy2Modelica_v2 Python/Lisp 

RAMD PSU (iFAB) CyPhyCADAnalysis Python 
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Transportability Ricardo Inc. CyPhyCADAnalysis Python 

Table 1: Integrated analysis tools 

4.5 Future Enhancements 
Any tool can be integrated with the OpenMETA toolchain as long as the new analysis 

tool can take artifacts generated from the OpenMETA toolchain as inputs. Several model 

transformations are provided to generate artifacts in the form of Analysis Interpreters; for 

instance, they can generate composed geometric models (i.e., 3D CAD models) and 

composed dynamics models. If additional information has to be extracted from the 

CyPhy models, then a new Analysis Interpreter can be implemented and added to the 

toolchain, which may require developers to recompile the tools and build a new installer. 

 

4.6  AVM Involvement 
 

Several analysis tools were used during beta testing, the FANG challenge, gamma 

testing, and other AVM performers. One beta testing team has implemented an example 

analysis tool that uses the Java programming language. Some system level requirements 

(e.g., transportability, field of view, etc. developed by Ricardo) were evaluated by the 

analysis tools listed above during the FANG competition and gamma testing. 

 

4.7  Conclusion 
 

The OpenMETA tools provide several useful model transformation interpreters (i.e., 

Analysis Interpreters), which are deployed as part of the installer. These interpreters 

generate executable artifacts from the multi-domain CyPhy models, including dynamics 

behavior models and geometric analysis techniques. These general built-in capabilities 

provide a good start on the path of designing cyber-physical systems, but it is common 

that domain-specific design teams may need to implement specialty downstream tools for 

post-processing of the standard OpenMETA execution artifacts. These downstream tools 

are typically used to evaluate specific system level requirements pertaining to that team’s 

expertise. The OpenMETA developers have provided an easy interface for 3rd party 

developers to add their custom analysis tools, automate their execution using the Job 

Manager, and immediately see the impact of the new tools using the Project Analyzer. 

 

5.0  Performance Optimization and User Interaction Enhancement 

5.1  Summary 
 

This section describes all major performance optimizations and user interaction 

enhancements for the OpenMETA toolchain. The most frequently used (critical) software 
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components were identified and analyzed in order to provide better usability and 

scalability of the META toolchain. The critical software components are used by many 

model interpreters, model management tools, and CyPhy Test Benches such as the 

CyPhyElaboratorCS, the MasterInterpreter and the Job Manager. All three software 

components are implemented in .NET (C#). 

- The CyPhyElaboratorCS is a library (.dll) that unfolds component and component 

assembly references into component instances and component assemblies, respectively. 

This tool helped to address scalability (memory) issues, as the models were growing 

bigger and bigger. 

- The MasterInterpreter is a GME model interpreter implemented in .NET (C#). It 

provides automation to translate any CyPhy Test Benches, Parametric Exploration (PET) 

models, and Suite of Test Benches (SoTs) over a full design space, meaning that it 

supports elaboration of Test Bench templates and automatically calls the associated 

analysis tools defined by the workflow object. After the individual model transformations 

are done, the generated artifacts are posted to the Job Manager in the form of an 

execution job. 

- The Job Manager is a Windows Forms application implemented in .NET (C#). It 

makes analysis job execution possible both locally and on remote servers. The jobs are 

executed in parallel based on the available resources. 

In addition to the three critical software components mentioned above, the optimization 

addressed the performance and usability issues of a few domain-specific programs, such 

as CyPhy2Modelica and ParameterEditor. For instance, the CyPhy2Modelica model 

interpreter now runs an order of magnitude faster and contains an extensive structural 

model checker to prevent downstream execution issues in advance. 

5.2  Objective 
 

The AVM Program has provided many opportunities for testing the OpenMETA 

toolchain. All tools were alpha tested by Vanderbilt engineers and student interns during 

the development process. There was also an AVM-sanctioned beta testing group which 

incorporated test users from several industry design teams, including Ricardo, JPL, and 

others. During the FANG competitions, competitors were encouraged to submit Help 

Desk tickets whenever they encountered unexpected behavior from the tools. In many 

cases, the questionable behavior provided an opportunity to improve the User’s Guide 

and tool documentation; a few of the Help Desk tickets turned into OpenMETA bug 

reports for the Vanderbilt team. The remaining feedback from users became a 

“suggestion box,” the industry designer’s wish-list for features that would improve 

usability of the tools.  

 

There were several recurring themes within the set of Help Desk tickets: many cited a 

need for performance improvements relating to scalability. Some of these shortcomings 
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became apparent as new analysis tools were integrated with OpenMETA, and could not 

have been foreseen at the earliest stages of the tool development process. For instance, 

structural and thermal finite element analysis (FEA) were added after the execution 

infrastructure was somewhat mature. Some of these FEA Test Bench execution times 

required several hours to complete for a single design point. Invariably, the growing size 

of the design space coupled with the need to execute many time-consuming analyses on 

each design point resulted in a bottleneck when executing the analyses. The overhead 

involved in configuring complicated analyses and long execution times may be 

acceptable on the scale of a few analyses per design iteration (i.e., the typical engineering 

design flow); however, the OpenMETA design paradigm is was a fundamentally different 

process, due largely to its utilization of full-fledged execution for a large set of potential 

design candidates. 

 

The first step was to identify the software components that were central to the bottlenecks 

forming in the OpenMETA design flow. Next, we tried to quantify the performance and 

generated overhead of these critical software components by pressing the limits of their 

usage. This included constructing worst-case scenario models intended to cause problems 

or failures and profiling the code to narrow the field of focus to the slowest and most-

used portions of the code base. These tests revealed a list of inefficient paths that could 

aid developers in determining which paths deserved highest priority for performance 

improvements. 

 

Some of the inefficiency was present in 3rd-party analysis tools, and it was impossible to 

address these issues, short of finding and integrating a new and more efficient tool to fill 

each role. Some inefficiency was directly correlated with the number of objects (e.g., 

components and design points) in the CyPhy model, and the resulting improvements were 

primarily user-interface related, such as adding progress bars to keep the user engaged, 

using multi-threading to maintain some degree of functionality during execution, and 

adding the option to cancel a long-running process prior to completion. We also 

determined that three software components were candidates for a complete overhaul, 

allowing us to re-implement the full functionality (with improvements) while including 

optimization as a primary goal: the CyPhyElaboratorCS, the CyPhy2Modelica model 

translator and the Master Interpreter. The Job Manager received several usability 

enhancements driven by the longer execution runtimes introduced later in the program. 

Additionally, the Modelica Importer and Parameter Editor features were created to 

improve productivity. 

 

There is always room for optimization and usability improvements; if time were not an 

issue, it may have been appropriate to re-write other sections of the OpenMETA code 

base, targeting optimization throughout the process. However, this was not the case, and 

will probably never be the case in the scope of a large-scale cutting-edge research project 

like AVM, where goals and deliverables are constantly in flux based on changing needs 

and trial-and-error. New tools and concepts are incorporated while they continue to 
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mature, and time constraints force improvements to be considered as a secondary priority, 

during the short periods when integration has reached a state of temporary stability. 

5.3  Detailed Description  
 

If an application is user-friendly, it is much more likely to be adopted by design teams. 

Part of usability is related to software efficiency, and OpenMETA developers made as 

much effort as possible to analyze and streamline the code base to minimize runtime 

overhead. Another big part of usability is ergonomics and familiarity; new users should 

be able to pick up the OpenMETA tools and immediately be productive, using minimal 

input to achieve maximum productivity. Vanderbilt put significant effort into 

accommodating requests from external testers, with the goal of making the adoption and 

integration process as seamless as possible, both for users and 3rd-party tool developers.  

 

The OpenMETA design flow is predicated on the pre-existence of domain models (e.g., 

dynamics, 3D geometric, etc.), which can then be wrapped as multi-domain CyPhy 

Component models, enabling the user to leverage the OpenMETA capabilities. 

Parametric Modelica models are used within the component models to capture the 

dynamics behavior of components, which made it necessary to extract interface 

information from the Modelica models and wrap them in CyPhy, a process called 

curation. For the AVM FANG competition, the C2M2L
3
 model libraries were used to 

create AVM Component Models (ACMs), which are AVM-specific CyPhy Component 

models. The complexity of the C2M2L Modelica package and the idiosyncrasies of the 

Modelica language itself made the manual curation process time-consuming and error-

prone. To minimize the manual user interaction, the Modelica Importer (an OpenMETA 

tool) and the py_modelica_exporter (a custom Python module) were created. These 

reduced the time required to curate components by an order of magnitude, and 

standardized the resulting ACMs. These curation tools help future users of the tools to 

effectively import their existing Modelica libraries into the CyPhy environment as 

ACMs. 

 

Once users had a working library of parametric ACMs, they needed to create component 

instances
4
, which required copious amounts of tedious manual data entry. The Parameter 

Editor tool was created to facilitate this process and to enhance usability. The Parameter 

Editor presents all a Component’s Property and Parameter objects in an alphabetically 

sorted table format, allowing the user to quickly find and edit the appropriate values. 

 

After the user has created a system (or system design space) by composing a group of 

ACMs (either parametric components or instances), it is time to run analyses. For the 

                                                      
3
C2M2L was another project within the AVM program with the goal of creating a library of multi-domain 

AVM Component Models, including Modelica, 3D geometric, and manufacturing models. 
4
Component instances are copies of the parametric models that have actual component data from 

manufacturers’ datasheets  
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dynamics domain, the CyPhy2Modelica model translator is used to produce a composed 

Modelica system model, ready for execution. This was the first domain model translator 

to reach maturity; consequently, it was used more thoroughly, giving the developers the 

opportunity to quantify its shortcomings and re-implement it in a more robust and 

efficient manner. Improvements were made as follows: 

- A structural model diagnostic utility is provided in the form of a structural model 

checker including 110 rules; prior to the model translation, the structure of the 

CyPhy model is evaluated against the checker rules. These rules include 

violations of Modelica syntax, in addition to semantic errors such as incompatible 

connections, self-connections, invalid value ranges, loops and type mismatches in 

value flows, etc. The checker results are summarized in the GME Console for the 

user based on the severity of the rule violations, along with hyperlinks to the 

culprit objects.  

- As an additional option for pre-execution model diagnostics, generated Test 

Bench models can be checked for correctness using an external Modelica 

compiler, and the results are mapped back to the GME Console, with hyperlinks 

to the original source models.  

- Templates are used when generating (Python) execution scripts for better 

maintainability, where string building was used in the first version 

- Generated Modelica models are simplified, using minimal overhead code 

(hierarchical ‘wrappers’ were used in the first version; the new version leverages 

the object-oriented nature of the Modelica language using the ‘extend’ keyword). 

This makes the generated models more readable and easier to debug. 

- Generated models comply with Modelica Language Specification 3.2 

- A full Modelica package is generated, allowing the user to view all the associated 

models (including components, subsystems, and the full system), and sub-

packages from a single entry-point. 

- When CyPhy2Modelica is invoked as a standalone interpreter, it exports all 

component alternatives as part of the generated Modelica package. 

 

The Master Interpreter is used in the setup and execution of almost all OpenMETA 

analyses. It has the ability to call one or more domain interpreters repeatedly, over an 

entire design space, minimizing the necessity for user interaction. It also can call cross-

domain (i.e., domain independent) analysis interpreters, such as the Parametric 

Exploration Tool (PET) over a design space (or a user-defined set of design candidates). 

Due to its ubiquity in the OpenMETA design flow, and to its maturity, it was also 

selected for a complete overhaul. Improvements were made as follows: 

- The ICyPhyInterpreter Interface was created, and all interpreters which should be 

called by the Master Interpreter were modified to implement this interface. 

ICyPhyInterpreter defines a common set of functions to interact with individual 
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interpreters such as show interpreter configurations to the user, save and retrieve 

the user entered configurations, define the output directory where artifacts have to 

be generated, and invoke the model transformation repeatedly in silent mode.  

This will also aid when integrating new analysis tools that require new model 

translator interpreters. 

- A structural model checker was added, allowing the Master Interpreter to catch 

general modeling errors when it is called. The advantage of using such a checker 

becomes apparent with large design spaces: if there is a problem in the ‘master’ 

model template, it will propagate to all the models in the design space. Rather 

than generating hundreds or thousands of invalid models, the Master Interpreter 

will fail up front, assess the problems, and provide feedback to the user on the 

GME console, with hyperlinks to the problem models. 

- The Master Interpreter can be invoked on large sets of models, calling other 

interpreters repeatedly. Since each interpreter (including the Master) has a non-

zero runtime, this process can easily run into the 10s or 100s of seconds. For the 

re-write, a progress bar was added, giving the user a way to estimate the time to 

completion. Also, we added the option to cancel an invocation before it is 

completed, allowing users more control over their machine’s resources. 

 

When building system models from ACMs, designers have the option to use 

ComponentReferences in their system models rather than ComponentInstances. This 

reduces the memory and hard drive footprint for GME/CyPhy models. The design space 

exploration tool (DESERT) also utilizes these reference objects when generating design 

configurations from the discrete design space, for the same reason. Before domain-

specific analysis interpreters run on a system design, the references must be replaced with 

component instances; the CyPhyElaboratorCS tool performs this task automatically. 

Since it is invoked on every single design configuration, it is crucial that it runs as 

quickly as possible. Also, its task is well-known and very straightforward, and it too was 

completely re-implemented with the primary goal of optimization. 

 

The Job Manager is used to execute analysis packages after they have been generated by 

other interpreters. It can access the user’s machine to execute jobs on idle CPU cores, and 

it can execute jobs on remote machines, which may be on a local area network or on 

another continent. Sometime after the Job Manager was implemented and had reached 

maturity, we discovered that some analysis jobs can take hours or even days to complete 

(in particular, finite element analysis). If such jobs are running remotely, it is likely that 

the network connection will be lost during execution (e.g., a power outage, the Job 

Manager application is closed, etc.). To address these limitations, the Job Manager was 

augmented with the following capabilities: 
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- Users can prioritize jobs. If a job is expected to consume CPU cycles for an 

extended period of time, users can prioritize jobs with the goal of maximizing 

resources 

- When remote jobs are completed, the result artifact must be downloaded to the 

user’s machine. Some results artifacts can be large, and take time to download. In 

the event that connectivity is lost during download, the Job Manager will attempt 

to resume/retry the download when connectivity is restored 

- If the Job Manager application is closed while remote jobs are running (or the 

user’s machine sleeps, or hibernates, or is shut down), it will sync long-running 

jobs from the server on restart/reboot. 

5.4  Validation 
 

To validate the improvement detailed above, we timed their performance on identical 

models. In the case of re-implementation, versions 1.0 and 2.0 existed side-by-side. We 

invoked each version on identical models, clocked the execution runtimes, and checked 

to ensure functionality was preserved or improved. In the case of added features, new 

functionality was thoroughly tested, both internally and externally, to ensure the 

improvement both addressed the relevant issue and did not introduce any new problems. 

5.5  AVM Involvement 
 

The OpenMETA tools have seen use by many different groups of users, including 

Vanderbilt University student interns, other AVM performers
5
, AVM program 

beta/gamma testers, and FANG competitors. These groups provided useful feedback to 

the development team regarding bottlenecks in the design flow, enabling developers to 

target those critical components for optimization. Furthermore, as new tools were 

integrated with the toolchain and the size and scale of projects grew larger, unforeseen 

effects came to light. 

5.6  Conclusions 
 

Widespread usage allowed Vanderbilt developers to better assess the shortcomings in the 

OpenMETA toolchain. The feedback from users helped to prioritize the list of 

shortcomings. Items with the highest rates of usage received the highest priority, and 

significant time was allocated to categorize the required behavior and to re-implement 

these software components with optimization as a primary goal, in addition to preserving 

the full functionality. Finally, the lower priority items received the remainder of time, and 

were improved to the fullest extent possible. These changes improved the quality of the 

tools and increased the productivity of both developers and end users. 

                                                      
5
 Palo Alto Research Center (PARC), Stanford Research Institute (SRI), and Ricardo all developed analysis 

tools which were integrated into the OpenMETA toolchain. 
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6.0  WebGME Development 

6.1  Summary 
 

The baseline OpenMETA tools are based upon the Generic Modeling Environment 

(GME). GME is a meta-programmable, Windows-based desktop modeling environment 

that has been developed and used at Vanderbilt starting in 2000. While its flexibility and 

programmability is attractive for the language definition and evolution of the CyPhy 

language, a new editing environment will accelerate widespread deployment.  The 

following features were specifically requested by users from the FANG competition and 

gamma testers: 

- Collaboration: Desktop GME is single user.  Complex systems involve multiple 

designers.  Sharing a single model adds overhead to the modeling process. 

- Multiplatform: Desktop GME is Windows-only.  Support for Linux/Unix and 

tablet devices is desired. 

- Usability and visualization: Desktop GME implements a rigid “boxes-and-lines” 

model representation.  Improved editing and navigation of large models are 

needed, along with integrated visualization of simulation results. 

 

The web-based version of the Generic Modeling Environment (WebGME
6
) is being 

developed in ongoing ISIS internal R&D efforts to address these needs.  WebGME is 

implemented in JavaScript on the server and client side, and is cross-platform as it 

requires only a web browser. WebGME provides a web-based meta-modeling 

environment for any domain specific language and meta-model authoring. The meta-

model and the associated instance models are stored within the same project. This 

approach helps users with accessing and authoring the meta- and instance models within 

the same environment and at the same time. WebGME allows multiple users to edit the 

models through real-time collaboration. All models are under version control and are 

stored in a persistent database using MongoDB. 

 

In addition to the generic user interface, WebGME provides a set of Application 

Programming Interfaces (APIs) for the following workflows:  

- implementing custom decorators and visualizers 

- accessing (i.e. reading and writing) the data model 

- implementing model transformations as plugins 

- creating domain-specific user interfaces 

                                                      
6
 http://webgme.org/WebGMEWhitePaper.pdf 

http://webgme.org/WebGMEWhitePaper.pdf
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All APIs are provided in JavaScript; if developers would like only to read models, any 

programming language is supported through a RESTful API. 

 

This effort led to the implementation of WebCyPhy, which includes a domain specific 

meta-model and a custom visualizer implemented using WebGME, coupled with the 

plugins needed to interpret and execute model analyses. This provides users with the 

ability to collaborate on model design, and maintains the OpenMETA Test Bench 

analysis functionality as a back end. 

 

6.2  Objective 
 

The OpenMETA toolchain saw extensive use and matured significantly throughout the 

AVM program. As the tools were exercised, it became apparent that there are limitations 

which cannot be addressed by simply improving existing features or adding new ones. 

One limitation is scalability: the functional size of a CyPhy project is limited by the fact 

that the mature OpenMETA tools are using the 32-bit version of GME. A second major 

limitation involves model portability and versioning: CyPhy projects (i.e., GME projects 

using the CyPhy Modeling Language or CyPhyML) are stored as binary files (.mga), so 

version tracking with Subversion or Git is impractical. Another significant limitation is 

the lack of efficient multi-user support. The simplest workflow for collaborative model 

editing was (1) each team member would get a copy of the model, (2) team members 

would work in parallel on separate machines, and (3) periodically, one team member 

would manually merge the models. For a variety of reasons, this process of parallel 

editing and periodic merging is tedious, time-consuming, and error-prone. These inherent 

shortcomings revealed the need to pursue drastically different avenues in order to find an 

effective resolution (as a temporary solution, a SubTreeMerge tool was implemented to 

address the model merging aspect of that issue). 

 

The first step was to quantify, as best we could, the limitations. We accomplished this in 

a few different ways. For example, to determine the maximum size for a CyPhy project, 

we used a script to repeatedly create new objects within a CyPhy project until the 32-bit 

GME application ran out of memory and crashed. This revealed that for a typical 

developer’s machine, ~10k AVM Component Models could be stored
7
.  Throughout the 

AVM program, OpenMETA developers have created CyPhy models for testing purposes, 

some of them based on users’ models (e.g., for bug fixes) and others built internally in 

the process of tool development and testing. OpenMETA developers are intimately 

familiar with the tedium involved with merging models, and in many cases were resigned 

to having a single person getting a ‘lock’ on the master model (using Subversion), 

making the necessary changes, committing the changes to the master copy, and then 

releasing the lock. The OpenMETA development team experienced much frustration with 

                                                      
7
This limitation could become problematic when using component-based design techniques, where a 

typical system design could incorporate libraries with thousands of off-the-shelf component alternatives. 
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this limitation, despite the fact that building/editing models was required during only a 

fraction of the work week; this limitation on collaborative model development would 

have a much stronger effect on actual design teams who are end-users of the OpenMETA 

tools. Indeed, this frustration was echoed by beta and gamma testers, who strongly 

expressed the need for improvements in collaborative abilities. 

 

As mentioned above, it is impossible to address these concerns by augmenting or adding 

to the existing GME or OpenMETA tools. Due in part to the recent ubiquity of internet 

access and the resulting improvements in web development frameworks/libraries, we 

decided to pursue a web-based approach.  In work unrelated to AVM, ISIS Vanderbilt 

has been developing WebGME; it is functionally similar to GME, in that it supports 

custom meta-model definition for domain-specific applications, domain-specific instance 

model creation and editing, along with the ability to integrate existing external modeling 

techniques and analysis tools. However, it also provides solutions to the limitations listed 

above. It is cross-platform, in that it requires only a network connection and a web 

browser to create and edit models. Models are stored in a persistent Mongo database, 

which can be hosted locally (i.e., on the same machine as the WebGME server) or 

remotely. Multiple databases can be associated with a single WebGME server, and 

multiple WebGME servers can utilize a single database. A single Mongo database is 

capable of storing and managing terabytes of model content, which exceeds the desktop 

GME limitations by several orders of magnitude. 

 

A single WebGME instance can serve multiple clients, allowing several users to access 

and edit the same project simultaneously, and WebGME tracks of all changes in the 

database. In terms of model analysis, we leverage the entire OpenMETA toolchain 

capabilities on the server side, since it is a mature and well-tested application. 
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6.3  Architecture 
 

 
Figure 14: WebGME high-level architecture diagram (http://webgme.org/WebGMEWhitePaper.pdf) 

 

WebGME is a server-client application, which consists of a web server and clients (e.g., 

web browsers) connecting to the web server. Using this server-client architecture makes 

cross-platform support easier, because modern web browsers are available on all major 

platforms, from desktops to mobile. Hence, using a web-based user interface (UI) can 

reduce the development time, can make the source code more portable, and can present a 

consistent look and feel for the entire application. 

 

The web server provides access to the models using HTTP(S) and WebSocket (Secure) 

WS(S) connections through the model API, query processing, and notification services. 

The server is also capable of running plugins, and may have better performance profiles 

than the clients. Thus, transferring the models to the clients is unnecessary, decreasing the 

execution time in cases where the plugin’s algorithm is complex or when it must process 

a significant amount of model content. The web server is implemented in JavaScript 

using a fast, easily scalable, non-blocking, event-driven platform NodeJS. The web server 

accesses the model database using TCP/IP connection. The models are stored as JSON 

documents in a NoSQL database MongoDB. 
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Programmatically traversing models is done through plugins written in JavaScript. These 

are the counterpart of interpreters in GME, with the exception that a plugin cannot 

receive input from the user beyond an initial configuration menu. Plugins are typically 

configured and invoked from the browser but can also be invoked within a standalone 

NodeJS process without the WebGME application running. When invoked from the 

browser any plugin can be configured to run either directly in the browser or on the 

server. Accessing nodes (i.e., models) is done through the model API granting access to 

the model storage database. Based on the context of the invocation, the root-node of the 

current project and branch are automatically loaded. From the root-node, the meta nodes, 

active node, and active selection are preloaded. A typical plugin execution loads, 

modifies, and adds nodes from this root-node as the model is traversed. The default 

‘save’ method pushes all accumulated changes into one commit, and when possible, sets 

the head pointer of the branch to this commit. 

 

Plugins have access to the BLOB storage through the BLOB Client and can load 

metadata and content based on hashes given from the plugin configuration or from asset-

type attributes of model objects. Conversely, new files can be added using the BLOB 

Client and the generated hashes can be used to update the model or be returned to the 

user as a downloadable artifact in the result object. The option of running a plugin in 

either the browser or on the server puts certain constraints on the implementation of the 

plugins. For instance, template files need to be transformed into JavaScript files that can 

be loaded into the browser, and JavaScript code cannot rely on global objects (i.e., 

accessible from the browser only). 
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6.4  Data flow 
 

 
 

Figure 15: WebGME Data Flow 

 

Figure 15 shows how users interact with WebGME models. All models, including meta-

models and instance models, are version-controlled and stored in a persistent database. 

Users can access any model through a generic user interface provided by WebGME or a 

domain specific user interface provided by WebCyPhy. Both user interfaces are using the 

“Model API” to read and write the data models in the database. Users can invoke plugins 

(i.e., model transformations) on their models using both user interfaces. The plugins can 

be divided into two main categories: (a) generic plugins and (b) domain specific plugins. 

Generic plugins are implemented in such a way to work with any domain, whereas 

domain specific plugins are aware of many meta-model concepts and rules for a specific 

domain. Plugins may use the Executor Client API to analyze or run the generated code 

and transformed models. Generated code, models, and results are stored as user-

accessible result artifacts in the WebGME environment. 
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6.5  Detailed Technical Description 
 

 
Figure 16: ADMEditor language concepts 

 

The CyPhy language used by OpenMETA evolved significantly throughout the AVM 

program as new domains and their analysis tools were integrated into the toolchain. The 

end result is a complex meta-model, spanning multiple distinct domains and supporting a 

wide range of design/analysis techniques, both domain-specific (e.g. dynamics models 

targeting Modelica, and geometric models) and generic, i.e., domain independent (e.g., 

DESERT, PET). Because of this complexity, resource limitations prohibited a 

comprehensive re-implementation of the CyPhy meta-model in WebGME. Furthermore, 

the OpenMETA toolchain is a mature and well-tested software application which 

supports the desired design/analysis techniques and a large degree of automation, along 

with well-defined APIs. Consequently, we chose to implement a minimal meta-model  

for collaborative design editing in WebGME, targeting the AVM interchange formats 

(e.g., ACM
8
, ADM

9
), and leveraging the desktop OpenMETA tools as an execution 

framework. Essentially, users can upload component and system design models to 

WebGME, create/edit designs (multiple users working in the same project, with version 

                                                      
8
 AVM Component Model, an XML file representation of a discrete component, describing its domain 

models and interfaces 
9
 AVM Design Model, an XML file representation of a system design, describing internal design containers 

(e.g., Alternative or Optional), component instances, and interfaces 
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tracking in a network-accessible database), explore their design space using DESERT, set 

up Test Benches, and execute analyses. After execution, results are stored in the 

WebGME design models, allowing all team members to view existing results, with the 

goal of preventing redundant analysis execution. 

 

This vision for WebCyPhy “1.0” as a collaborative design editor was the primary driver 

for the meta-model development process, resulting in the ADMEditor language. 

ADMEditor supports ACM import, ADM import/export, the ability to create new and 

edit existing ADMs, and execution of pre-existing CyPhy Test Benches (see Figure 16). 

Additionally, a domain specific user interface (WebCyPhy), was developed in order to 

incorporate context-specific visualization techniques. The following four sections 

describe the WebCyPhy implementation of AVM Component Models, AVM Design 

Models, AVM Test Bench Models and the domain specific user interface. 

 

6.5.1 AVM Component Model 

 

Components span multiple domains (e.g., structural, dynamics, cyber, manufacturing, 

etc.) and include the necessary model assets from each domain. Compositions of 

components form AVM Design Models. Components can be constructed in the CyPhy 

modeling environment by manually wrapping domain models targeting different analysis 

tools and extracting common parameters and interfaces. To facilitate the component 

library building process, a range of component authoring tools are provided by the 

OpenMETA toolchain (an example Component model is shown in Figure 17). 

 

The Component Exporter tool exports a CyPhy component model into a single ACM zip 

package. All resource files associated with the component are included within the ACM 

zip-file. During the export process, the exporter tool ensures that violations of the format 

are either automatically fixed (e.g., blank ID attributes are filled) or reported to the user 

as warnings or errors (e.g., duplicate IDs, missing resource files). 

 

Conversely, ACMs (i.e., zip packages) are imported to CyPhy using the Component 

Importer tool. The OpenMETA toolchain provides a command line utility to automate the 

ACM import process (e.g., for an entire component library). Within the context of 

WebCyPhy, these data flows and model transformations are used to programmatically 

build up the CyPhy models in the OpenMETA toolchain desktop environment during 

Test Bench executions.   
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Figure 17: A Component representing a Cross Drive in CyPhyML in GME 
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Figure 18: META model of AVM Component Model in ADMEditor in WebGME 

 

In the current implementation of the ADMEditor language, ACMs are read-only models 

and the full content is not preserved directly in the WebCyPhy component model. Only 

the content necessary for composition and instantiation are stored as objects (e.g., 

properties, connectors, ports and domain-models).  All other parts (e.g., resources and 

domain-model content) are stored as an asset in the WebGME artifact storage containing 

the original ACM zip package. This artifact is referenced from the component through 

the Resource asset attribute. ValueflowCompositions between properties are preserved in 

the model in order to distinguish between public and derived (i.e. internal) properties (see 

Figure 18). Importing components into WebCyPhy is done using the ACM Importer 

plugin. The configuration of the plugin takes one or more uploaded ACM zip-files. There 

is no plugin for exporting components from WebCyPhy. However, since the ACM is 

fully described by the artifact in the ACM’s Resource attribute, the user can export the 

ACM by downloading the Resource.  An example Component model in WebGME is 

shown in Figure 19). 
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Figure 19: AVM Component Model in ADMEditor in WebGME 

6.5.2 AVM Design Model 

 

Designs are composed of AVM Component Models and can contain defined Properties, 

Formulas, Connectors and a hierarchy of Containers, in addition to value-flows and 

connections between components and subsystems. A Container in itself can be viewed as 

an AVM Design Model for the subsystem it describes. An ADM can describe either a 

single design point or a whole design space (see Figure 20). A single design point only 

contains Compound Containers, whereas a design space also contains Alternative 

Containers. In both cases, the description of an AVM Design Model is only complete 

when all of its referred ACMs exist in the same Project or Workspace, since the ADM 

contains only the ACM IDs and not the full ACM descriptions.  The ADM Meta-model is 

shown in Figure 21. 

 

An AVM Design Model in CyPhy can be exported as an ADM using the Design Exporter 

interpreter. During export, the interpreter ensures that violations of the format are either 

automatically fixed (e.g. blank ID attributes are filled) or reported to the user as errors or 

warnings. Conversely, importing AVM Design Models is done using the Design 

Importer. For a successful import, all referenced AVM Component Models must be 

available in the project. 
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Figure 20: A Hierarchical Design-Space in CyPhyML. Shown are Connectors, Components, Compound and 

Alternative Containers. 

 

In WebCyPhy the full content of an AVM Design Model is stored in the model and any 

changes are persistently saved in the database. The generic WebGME User Interface (UI) 

allows model editing in a similar fashion to that of GME. Invoking the ADM Exporter 

plugin on an AVM Design Model will create a new ADM (which can be imported back 

to CyPhy). Thus, in regard to design modeling, multiple users can develop their system 

design with all the collaborative benefits that WebGME offers (e.g., version control, 

platform independency, simultaneous editing, etc.). At the same time, the AVM 

interchange format allows such system designs to be evaluated by the analysis tools 

integrated within the OpenMETA suite. 
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Figure 21: META model of AVM Design Model in ADMEditor in WebGME. 

 

The ADM Importer plugin is used to import an ADM file into WebCyPhy. The 

configuration of the plugin takes an uploaded ADM file as input. To successfully import 

an AVM Design Model, all referenced components must already be present in the 

Workspace. The ADM Importer gathers the IDs of the components referenced in the 

ADM and checks if those components exist in the Workspace; if not, the missing 

components are reported as errors. Conversely, the ADM Exporter plugin exports an 

AVM Design Model from WebCyPhy to an ADM file. To ease the exchange process 

there is an option to package all the referred components together with the ADM file in a 

single artifact. 
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Figure 22: A Hierarchical Design-Space in ADMEditor. Shown are Connectors, Components and Containers. 

 

The ADMEditor language currently supports unconstrained design space exploration, 

which relies on the DESERT tool. This aspect of the modeling process is implemented in 

a domain specific WebCyPhy UI (explained more in detail in the last section). When the 

user requests the configurations to be calculated for a design space, the design space is 

traversed and an input XML for the DESERT tool is created and saved to the BLOB 

storage together with execution instructions as an artifact. This artifact is used to create a 

job in the Executor Client (1. in Figure 23 below); the plugin periodically queries the 

Executor Client about the job’s status (2. in Figure 23 below) and once the job has 

finished (3. in Figure 23 below) the DESERT output can be accessed and visualized in 

the browser (see Figure 24). 
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Figure 23: Data flow during Design Space Exploration from the Domain Specific WebCyPhy UI. 

 

Generated configurations can be saved in the model as light-weight objects containing 

references to alternative selections. These configuration objects also serve as containers 

for Result objects, which store the artifacts generated from Test Bench executions. 

 

 
 

Figure 24: Design Space with generated Configurations visualized in the Domain Specific WebCyPhy UI 
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The Generate Dashboard plugin was implemented to generate visualization packages for 

the Project Analyzer based on a set of design configurations. By default, the plugin 

searches for all result objects associated with the ADM, or the user can specify which 

result objects to visualize. From that set of result objects, the plugin generates all the 

necessary input data for the Project Analyzer. These input data files, together with the 

entire dashboard application are saved into a single artifact and exposed to the user. 

 

6.5.3 AVM Test Bench Model 

 

In the OpenMETA tools, Test Benches are the executable versions of the requirements 

and are used to evaluate system designs against specific requirements. 

 

 
Figure 25: META model of AVM Test Bench Model in ADMEditor 

 

Test Bench creation and editing is not fully supported in WebCyPhy. For the general 

case, users must export the AVM Design Model to an ADM file and import it into 

CyPhy, connect it in a Test Bench and execute it using the OpenMETA tools. However, 

in order to illustrate and exercise automatic Test Bench execution from WebCyPhy, a 

simple model of a Test Bench has been defined in the ADMEditor language. This 

approach is based on wrapping existing CyPhy Test Benches by attaching the xme (i.e., 

the GME/CyPhy project containing the Test Bench) file and related assets (e.g., post-

processing scripts, configuration files, Modelica Libraries) to the TestBenchFiles asset 

attribute. A CyPhy Test Bench within the xme is referenced by providing its path in the 

WebCyPhy Test Bench’s ID attribute. The xme file does not need to contain any AVM 

Component Models or detailed AVM Design Models, apart from a single ‘dummy’ 
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design defining the interfaces required to connect it in the Test Bench as the Top Level 

System Under Test (TLSUT). The dummy TLSUT, specified in the Test Bench of the 

xme file, will be replaced
10

 with the actual AVM Design Model used as the Top Level 

System Under Test in WebCyPhy (see Figure 26 below). 

 

 
Figure 26: META model of AVM Test Bench Model with a Top Level System Under Test containing only the 

interfaces of an AVM Design Model. 

 

When the user opens a Test Bench in the domain specific WebCyPhy UI, a list of all 

interface compatible AVM Design Models in the current workspace is displayed. Users 

can set the Top Level System Under Test and load any previously generated 

configuration sets for the chosen Design Space. If Executor Workers are available, 

selected configurations of the Design Space can be executed using the Test Bench Runner 

plugin (see Figure 27 and Figure 28 below showing the evolution of the Test Bench as 

the user makes selections). 

  

  

                                                      
10

 Switching the reference is done by the Reference Switcher interpreter, which rewires connections 

based on type and names. Implicitly this defines the interfaces an AVM Design Model must have in order 
to be evaluated against the Test Bench. To preserve this interface definition in the Test Bench of 
WebCyPhy, a Container containing the required interfaces can be placed within the Test Bench. 
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Figure 27: Selecting an AVM Design Model as Top Level System Under Test of a Test Bench (before). 

  

 
Figure 28: Selecting an AVM Design Model as Top Level System Under Test of a Test Bench (after). 

 

Invoking the Test Bench Runner will create an artifact on the BLOB storage containing 

the execution scripts and configurations for the job; the artifact from the TestBenchFiles 

attribute, an ADM
11

 file for the AVM Design Model that is set as the Top Level System 

Under Test, and the ACM zip packages of the Components referenced by the ADM. This 

generated artifact (0. in Figure 29) contains all the necessary artifacts to run the analysis. 

It can be accessed as a downloadable zip package from the plugin result or it can be used 

to automatically create a job for the Executor Client directly from the Test Bench Runner 

plugin, (1. in Figure 29). The plugin checks the status of the job at specified intervals (2. 

in Figure 29) and once the status indicates that the job has completed, the plugin can 

access the job’s result artifacts (3. in Figure 29). Each job is associated with a single 

design configuration, contained within the design space node. The job’s result artifacts 

are saved in a new result object within the selected configuration node. The execution of 

a Test Bench can take several hours, and the users may continue editing models during 

execution. After the job is completed, the plugin checks the database revision history and 

stores the results to the latest version of the model. Running the Test Bench Runner on 

                                                      
11

 By specifying a configuration the ADM Exporter only adds the alternatives that are 
part of the selection defined by the configuration. 
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the server permits the browser which initiated the execution to be closed; the result will 

always be stored in the model as explained above. 

 
 

Figure 29: Input Artifacts generated by the Test Bench Runner. 

 

6.5.4 Domain Specific User Interface 

 

The generic WebGME UI allows model editing in a similar fashion to that of GME. A 

user can create hierarchical models, edit attributes, define relations (pointers and sets), 

etc. either from the view of a canvas (“boxes-and-lines”) or a containment tree structure 

(Object Browser).  While the above is a powerful approach for modeling hierarchical 

cyber physical systems, some aspects of the entire design process might be visualized 

more naturally using other techniques.  

- As projects grow bigger and more users have access to them, it is desirable to 

present the project and Workspaces in a concise and meaningful way.  

- Although manual editing and plugin invocations cover many uses cases, none is 

well suited for programmatic changes based on user input and model content. In 

WebCyPhy, examples of such cases are design space exploration and Test Bench 

execution over a design space. 
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To enable such customizations a web application was implemented using AngularJS
12

.  It 

acts as a parallel (and complementary) view to the generic WebGME UI and uses the 

same model API for accessing and writing to the model. To ease the development of 

domain specific user interfaces, a distribution build process was added to WebGME. The 

required JavaScript classes, the Core Client for accessing nodes, the BLOB Client for 

BLOB access, and the Plugin Manager for executing plugins are bundled into a single 

JavaScript file. Once this JS file is included in a new project, it exposes all these classes 

from a global JavaScript object in browser. From the domain specific application this 

global object can be extended with the domain specific plugins. Since the WebCyPhy UI 

is an AngularJS application all these classes are implemented as AngularJS services 

(singletons containing functionalities accessible across the web application), making use 

of the built-in capabilities of AngularJS, particularly the use of promises for 

asynchronously loading nodes using the Core Client. The AngularJS services, 

specifically the Node Service implementing the Core Client, were also extended with 

additional utility functions, such as determining the meta type of a node, loading the 

direct children of a node, and attaching event handlers directly to a node. 

 

The design space exploration and Test Bench execution are presented in previous 

sections; below, the WebCyPhy Workspace management and visualization capabilities 

are presented (see Figure 30). Visiting the start (or landing) page of the application 

displays a listing of all Workspaces of the ADMEditor project. Live statistics are also 

displayed to the user, including number of Components, Design Spaces and Test Benches 

within each Workspace, as well as actions for each Workspace (e.g., rename, delete, etc.).  

                                                      
12

 https://angularjs.org/ 

https://angularjs.org/
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Figure 30:Listing of all available workspaces 

 

When creating a new Workspace, a single button click will invoke all required importers 

in the right order after the resources have been added to the form (in Figure 31, the user 

has added ACM and ADM files; clicking ‘Create’ will run the ACM Importer and then 

the ADM Importer). 
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Figure 31: Creating a workspace 

 

Navigating inside of a Workspace will bring up details about its content in terms of 

Component, Design Spaces and Test Benches (see Figure 32) . Each list provides a filter 

for quick navigation and the list items all have actions available through a drop down 

menu in the top right corner. These actions include options such as opening up the object 

in the WebGME UI, editing attributes, exporting to the ACM or ADM, deleting, etc. 

based on the object type. Statistics about domain models, number of configurations and 

results are also available where applicable. 
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Figure 32: Workspace details showing available Components, Design Spaces and Test Benches 

6.6  Future Enhancements 
 

The current implementation can be extended with Component authoring and Test Bench 

authoring capabilities. Both authoring capabilities are required to reduce the direct 

dependency on the desktop tools. All models are version controlled and WebGME 

supports branching of the model, but the WebCyPhy user interface currently displays 

only the master branch. The WebCyPhy user interface can be extended with the support 

of selecting branches, merging, and visualizing diffs or conflicts during merges. 

 

The binary large object storage (BLOB) should be fully implemented and tested with S3 

Amazon or private cloud storage backends. There are limitations in the maximum 

working size of BLOB complex objects (i.e., hierarchical objects such as a zip file with a 

folder structure). The size limitation (1GB) has not yet been problematic, but we should 

test the limitations to make future development easier and more robust. 

 

6.7  AVM Involvement 
 

The collaborative and version control capabilities of WebGME were tested by alpha and 

beta testers. WebGME and WebCyPhy were demonstrated to gamma testers who had 

pointed out the limitations of the OpenMETA desktop tools; these design teams found 

useful alternative workflows in WebCyPhy. It is possible that some workflows and some 

part of the web-based tools will be adopted by the gamma testers in the future. 
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6.8  Conclusions 
 

The Windows implementation of the CyPhy Modeling Language coupled with the 

OpenMETA toolchain is a robust and valuable modeling paradigm. It was tested 

thoroughly during the 4-year AVM program, and while its value was noted, its 

limitations revealed the need to explore new avenues for future development. WebCyPhy 

addresses critical limitations, and provides the ability to leverage the desktop versions of 

the tools, allowing users to build upon previous work in contrast with starting from 

scratch.  

 

WebCyPhy is an extensible and flexible application, and improves on 

CyPhy/OpenMETA capabilities in several ways. It gives users the ability to collaborate 

on model editing in real-time, along with a central model storage scheme, minimizing the 

headache of merging parallel work. Utilizing a central database betters the desktop model 

storage capabilities by several orders of magnitude. WebCyPhy provides a domain-

specific visualization platform, which is invaluable in cases where a boxes-and-lines 

schematic viewer fails to communicate the model content in a meaningful way. It is 

platform independent, and users can access their models over a network connection and 

remotely configure/execute analyses from a variety of internet-capable devices, including 

touch screen tablets.  

 


